Search
 
 

Display results as :
 


Rechercher Advanced Search

Latest topics
» didnt i tell her...i know youre reading this..
Sun Jan 06, 2013 3:41 pm by SusanG

» had fun at the show this weekend...
Sun Dec 02, 2012 12:48 pm by SusanG

» picture peds
Sat Nov 24, 2012 8:20 pm by poppabill

» Vader at Discovery Green...
Mon Nov 19, 2012 1:25 am by GIL

» hello guys all is good thanks to all
Sun Nov 11, 2012 9:10 am by SusanG

» Phat Girl...
Fri Nov 09, 2012 3:32 pm by GIL

» Hey J, you ok...
Thu Nov 01, 2012 3:25 pm by SusanG

» took mojo for a walk in the city...
Tue Oct 30, 2012 12:12 pm by GIL

» My prayers to all on this storm
Mon Oct 29, 2012 2:43 pm by JSAN_911

» I'm proud of my boy... Ch Mojo Jojo IDWP2 IDTT
Fri Oct 26, 2012 11:33 am by GIL

» reputable dog transporter
Wed Oct 24, 2012 10:50 pm by JSAN_911

» susan new look
Mon Oct 22, 2012 9:35 pm by GIL

Shopmotion


Navigation
 Portal
 Index
 Memberlist
 Profile
 FAQ
 Search
Affiliates
free forum
 

Improve Your Stock, Pedigree Analysis, Genetic Diversity, and Putting

Go down

Improve Your Stock, Pedigree Analysis, Genetic Diversity, and Putting

Post by JSAN_911 on Mon May 28, 2012 12:18 pm

Improve Your Stock, Pedigree Analysis, Genetic Diversity, and Putting It All Together
Improving your Stock - The In's and Out's
It's All In The Genes
As dog breeders, we engage in genetic "experiments" each time we plan a mating. The type of mating selected should coincide with your goals. To some breeders, determining which traits will appear in the offspring of a mating is like rolling the dice - a combination of luck and chance. For others, producing certain traits involves more skill than luck - the result of careful study and planning. As breeders, we must understand how we manipulate genes within our breeding stock to produce the kinds of dogs we want. We have to first understand dogs as a species, then dogs as genetic individuals. When evaluating your breeding program, remember that most traits you're seeking cannot be changed, fixed or created in a single generation. The more information you can obtain on how certain traits have been transmitted by your dog's ancestors, the better you can prioritize your breeding goals. Tens of thousands of genes interact to produce a single dog. All genes are inherited in pairs, one pair from the father and one from the mother. If the pair of inherited genes from both parents is identical, the pair is called homozygous. If the genes in the pair are not alike, the pair is called heterozygous.
BREEDING BY PEDIGREE
To review some options
Inbreeding significantly increases homozygosity, and therefore uniformity in litters. Inbreeding can increase the expression of both beneficial and detrimental recessive genes through pairing up. Inbreeding does not create undesirable genes, it simply increases the expression of those that are already present in a heterozygous state. Linebreeding attempts to concentrate the genes of a specific ancestor or ancestors through their appearance multiple times in a pedigree. The ancestor should appear behind more than one offspring. It is better for linebred ancestors to appear on both the sire's and the dam's sides of the pedigree. That way their genes have a better chance of pairing back up in the resultant pups.
Outbreeding brings together two dogs less related than the average for the breed. This promotes more heterozygosity, and gene diversity within each dog by matching pairs of unrelated genes from different ancestors. Outbreeding can also mask the expression of recessive genes, and allow their propagation in the carrier state.
PEDIGREE ANALYSIS
Geneticists' and breeders' definitions of inbreeding vary. A geneticist views inbreeding as a measurable number that goes up whenever there is a common ancestor between the sire's and dam's sides of the pedigree; a breeder considers inbreeding to be close inbreeding, such as father-to-daughter or brother-to-sister matings. A common ancestor, even in the eighth generation, will increase the measurable amount of inbreeding in the pedigree.
The Inbreeding Coefficient (or Wright's coefficient) is an estimate of the percentage of all the variable gene pairs that are homozygous due to inheritance from common ancestors. It is also the average chance that any single gene pair is homozygous due to inheritance from a common ancestor. In order to determine whether a particular mating is an outbreeding or inbreeding relative to your breed, you must determine the breed's average inbreeding coefficient. For the calculated inbreeding coefficient of a pedigree to be accurate, it must be based on several generations. Inbreeding in the fifth and later generations (background inbreeding) often has a profound effect on the genetic makeup of the offspring represented by the pedigree.


BREEDING BY APPEARANCE
Many breeders plan matings solely on the appearance of a dog and not on its pedigree or the relatedness of the prospective parents. This is called assortative mating. Breeders use positive assortative matings (like-to-like) to solidify traits, and negative assortative matings (like-to-unlike) when they wish to correct traits or bring in traits their breeding stock may lack.
Some dogs may share desirable characteristics, but they inherit them differently. This is especially true of polygenic traits, such as ear set, bite, or length of forearm. Breeding two dogs that visibly look or are (phenotypically) similar but (genotypically), the genes that the dog carries that you can not see visibly and are unrelated, bred together would not necessarily reproduce these visible traits. Conversely, each individual with the same pedigree will not necessarily look or breed alike.
Breedings should not be planned solely on the basis of the pedigree or appearance alone. Matings should be based on a combination of appearance and ancestry. If you are trying to solidify a certain trait - like topline - and it is one you can observe in the parents and the linebred ancestors of two related dogs, then you can be more confident that you will attain your goal.
GENETIC DIVERSITY
Some breed clubs advocate codes of ethics that discourage linebreeding or inbreeding, as an attempt to increase breed genetic diversity. This position is based on a false premise. Inbreeding or linebreeding does not cause the loss of genes from a breed gene pool. It occurs through selection; the use and non-use of offspring. If some breeders linebreed to certain dogs that they favor, and others linebreed to other dogs that they favor, then breed-wide genetic diversity is maintained.
Dogs who are poor examples of the breed should not be used simply to maintain diversity. Related dogs with desirable qualities will maintain diversity, and improve the breed. Breeders should concentrate on selecting toward a breed standard, based on the ideal temperament, performance, and conformation, and should select against any detrimental breed related health issues. Using progeny and sibling-based information to select against both polygenic disorders and those without a known mode of inheritance will allow greater control.
There is no specific level or percentage of inbreeding that causes impaired health or vigor. It has been shown that some inbred strains of animals thrive generation after generation, while others fail to thrive. If there is no diversity meaning the gene pairs are pretty much the same in both parents and are non variable but the (homozygote) or genes that are present are not detrimental, there is no effect on breed health. The characteristics that make a breed reproduce true to its standard are based on non-variable gene pairs. A genetic health problem arises for a breed when a detrimental gene increases in frequency and homozygosity.


PUTTING IT ALL TOGETHER
Decisions to inbreed, linebreed or outbreed should be made based on the knowledge of an individual dog's traits and those of its ancestors. Inbreeding will quickly identify the good and bad recessive genes the parents share in the offspring. Unless you have prior knowledge of what the pups of milder linebreedings on the common ancestors were like, you may be exposing your puppies (and puppy buyers) to extraordinary risk of genetic defects. In your matings, the inbreeding coefficient should only increase because you are specifically linebreeding (increasing the percentage of blood) to selected ancestors.
Don't set too many goals in each generation, or your selective pressure for each goal will necessarily become weaker. Genetically complex or dominant traits should be addressed early in a long-range breeding plan, as they may take several generations to fix. Traits with major dominant genes become fixed more slowly. Desirable recessive traits can be fixed in one generation because individuals that show such characteristics are homozygous for the recessive genes and you will be able to see them. Dogs that breed true for numerous matings and generations should be preferentially selected for breeding stock. This makes them prepotent and of extreme value.
If you linebreed and are not happy with what you have produced, breeding to a less related line immediately creates an outbred line and brings in new traits. Repeated outbreeding to attempt to dilute detrimental recessive genes is not a desirable method of genetic disease control. Recessive genes cannot be diluted; they are either present or not. Outbreeding carriers multiplies and further spreads the defective gene(s) in the gene pool. If a dog is a known carrier or has high carrier risk through pedigree analysis, it can be retired from breeding, and replaced with one or two quality offspring. Those offspring should be bred, and replaced with quality offspring of their own, with the hope of losing the defective gene completely.
Trying to develop your breeding program scientifically can be an arduous, but rewarding, endeavor. By taking the time to understand the types of breeding schemes available, you can concentrate on your goals towards producing a better dog.
Information gathered from writings of Dr. Jerold Bell
avatar
JSAN_911
ADMINISTRATOR
ADMINISTRATOR

Join date : 2010-06-28
Location : im in balls deep

http://x-mod.forumotion.com

Back to top Go down

Back to top


 
Permissions in this forum:
You cannot reply to topics in this forum